1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
use std::cmp::Ordering;
use std::fmt::Debug;

use crate::util::{hashmap_with_capacity, HashMap};
use crate::{Analysis, EClass, EGraph, Id, Language, RecExpr};

/** Extracting a single [`RecExpr`] from an [`EGraph`].

```
use egg::*;

define_language! {
    enum SimpleLanguage {
        Num(i32),
        "+" = Add([Id; 2]),
        "*" = Mul([Id; 2]),
    }
}

let rules: &[Rewrite<SimpleLanguage, ()>] = &[
    rewrite!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rewrite!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rewrite!("add-0"; "(+ ?a 0)" => "?a"),
    rewrite!("mul-0"; "(* ?a 0)" => "0"),
    rewrite!("mul-1"; "(* ?a 1)" => "?a"),
];

let start = "(+ 0 (* 1 10))".parse().unwrap();
let runner = Runner::default().with_expr(&start).run(rules);
let (egraph, root) = (runner.egraph, runner.roots[0]);

let mut extractor = Extractor::new(&egraph, AstSize);
let (best_cost, best) = extractor.find_best(root);
assert_eq!(best_cost, 1);
assert_eq!(best, "10".parse().unwrap());
```

**/
#[derive(Debug)]
pub struct Extractor<'a, CF: CostFunction<L>, L: Language, N: Analysis<L>> {
    cost_function: CF,
    costs: HashMap<Id, (CF::Cost, L)>,
    egraph: &'a EGraph<L, N>,
}

/** A cost function that can be used by an [`Extractor`].

To extract an expression from an [`EGraph`], the [`Extractor`]
requires a cost function to performs its greedy search.
`egg` provides the simple [`AstSize`] and [`AstDepth`] cost functions.

The example below illustrates a silly but realistic example of
implementing a cost function that is essentially AST size weighted by
the operator:
```
# use egg::*;
struct SillyCostFn;
impl CostFunction<SymbolLang> for SillyCostFn {
    type Cost = f64;
    fn cost<C>(&mut self, enode: &SymbolLang, mut costs: C) -> Self::Cost
    where
        C: FnMut(Id) -> Self::Cost
    {
        let op_cost = match enode.op.as_str() {
            "foo" => 100.0,
            "bar" => 0.7,
            _ => 1.0
        };
        enode.fold(op_cost, |sum, id| sum + costs(id))
    }
}

let e: RecExpr<SymbolLang> = "(do_it foo bar baz)".parse().unwrap();
assert_eq!(SillyCostFn.cost_rec(&e), 102.7);
assert_eq!(AstSize.cost_rec(&e), 4);
assert_eq!(AstDepth.cost_rec(&e), 2);
```

If you'd like to access the [`Analysis`] data or anything else in the e-graph,
you can put a reference to the e-graph in your [`CostFunction`]:

```
# use egg::*;
# type MyAnalysis = ();
struct EGraphCostFn<'a> {
    egraph: &'a EGraph<SymbolLang, MyAnalysis>,
}

impl<'a> CostFunction<SymbolLang> for EGraphCostFn<'a> {
    type Cost = usize;
    fn cost<C>(&mut self, enode: &SymbolLang, mut costs: C) -> Self::Cost
    where
        C: FnMut(Id) -> Self::Cost
    {
        // use self.egraph however you want here
        println!("the egraph has {} classes", self.egraph.number_of_classes());
        return 1
    }
}

let mut egraph = EGraph::<SymbolLang, MyAnalysis>::default();
let id = egraph.add_expr(&"(foo bar)".parse().unwrap());
let cost_func = EGraphCostFn { egraph: &egraph };
let mut extractor = Extractor::new(&egraph, cost_func);
let _ = extractor.find_best(id);
```

Note that a particular e-class might occur in an expression multiple times.
This means that pathological, but nevertheless realistic cases
might overflow `usize` if you implement a cost function like [`AstSize`],
even if the actual [`RecExpr`] fits compactly in memory.
You might want to use [`saturating_add`](u64::saturating_add) to
ensure your cost function is still monotonic in this situation.
**/
pub trait CostFunction<L: Language> {
    /// The `Cost` type. It only requires `PartialOrd` so you can use
    /// floating point types, but failed comparisons (`NaN`s) will
    /// result in a panic.
    type Cost: PartialOrd + Debug + Clone;

    /// Calculates the cost of an enode whose children are `Cost`s.
    ///
    /// For this to work properly, your cost function should be
    /// _monotonic_, i.e. `cost` should return a `Cost` greater than
    /// any of the child costs of the given enode.
    fn cost<C>(&mut self, enode: &L, costs: C) -> Self::Cost
    where
        C: FnMut(Id) -> Self::Cost;

    /// Calculates the total cost of a [`RecExpr`].
    ///
    /// As provided, this just recursively calls `cost` all the way
    /// down the [`RecExpr`].
    ///
    fn cost_rec(&mut self, expr: &RecExpr<L>) -> Self::Cost {
        let nodes = expr.as_ref();
        let mut costs = hashmap_with_capacity::<Id, Self::Cost>(nodes.len());
        for (i, node) in nodes.iter().enumerate() {
            let cost = self.cost(node, |i| costs[&i].clone());
            costs.insert(Id::from(i), cost);
        }
        let last_id = Id::from(expr.as_ref().len() - 1);
        costs[&last_id].clone()
    }
}

/** A simple [`CostFunction`] that counts total AST size.

```
# use egg::*;
let e: RecExpr<SymbolLang> = "(do_it foo bar baz)".parse().unwrap();
assert_eq!(AstSize.cost_rec(&e), 4);
```

**/
#[derive(Debug)]
pub struct AstSize;
impl<L: Language> CostFunction<L> for AstSize {
    type Cost = usize;
    fn cost<C>(&mut self, enode: &L, mut costs: C) -> Self::Cost
    where
        C: FnMut(Id) -> Self::Cost,
    {
        enode.fold(1, |sum, id| sum.saturating_add(costs(id)))
    }
}

/** A simple [`CostFunction`] that counts maximum AST depth.

```
# use egg::*;
let e: RecExpr<SymbolLang> = "(do_it foo bar baz)".parse().unwrap();
assert_eq!(AstDepth.cost_rec(&e), 2);
```

**/
#[derive(Debug)]
pub struct AstDepth;
impl<L: Language> CostFunction<L> for AstDepth {
    type Cost = usize;
    fn cost<C>(&mut self, enode: &L, mut costs: C) -> Self::Cost
    where
        C: FnMut(Id) -> Self::Cost,
    {
        1 + enode.fold(0, |max, id| max.max(costs(id)))
    }
}

fn cmp<T: PartialOrd>(a: &Option<T>, b: &Option<T>) -> Ordering {
    // None is high
    match (a, b) {
        (None, None) => Ordering::Equal,
        (None, Some(_)) => Ordering::Greater,
        (Some(_), None) => Ordering::Less,
        (Some(a), Some(b)) => a.partial_cmp(b).unwrap(),
    }
}

impl<'a, CF, L, N> Extractor<'a, CF, L, N>
where
    CF: CostFunction<L>,
    L: Language,
    N: Analysis<L>,
{
    /// Create a new `Extractor` given an `EGraph` and a
    /// `CostFunction`.
    ///
    /// The extraction does all the work on creation, so this function
    /// performs the greedy search for cheapest representative of each
    /// eclass.
    pub fn new(egraph: &'a EGraph<L, N>, cost_function: CF) -> Self {
        let costs = HashMap::default();
        let mut extractor = Extractor {
            costs,
            egraph,
            cost_function,
        };
        extractor.find_costs();

        extractor
    }

    /// Find the cheapest (lowest cost) represented `RecExpr` in the
    /// given eclass.
    pub fn find_best(&self, eclass: Id) -> (CF::Cost, RecExpr<L>) {
        let (cost, root) = self.costs[&self.egraph.find(eclass)].clone();
        let expr = root.build_recexpr(|id| self.find_best_node(id).clone());
        (cost, expr)
    }

    /// Find the cheapest e-node in the given e-class.
    pub fn find_best_node(&self, eclass: Id) -> &L {
        &self.costs[&self.egraph.find(eclass)].1
    }

    /// Find the cost of the term that would be extracted from this e-class.
    pub fn find_best_cost(&self, eclass: Id) -> CF::Cost {
        let (cost, _) = &self.costs[&self.egraph.find(eclass)];
        cost.clone()
    }

    fn node_total_cost(&mut self, node: &L) -> Option<CF::Cost> {
        let eg = &self.egraph;
        let has_cost = |id| self.costs.contains_key(&eg.find(id));
        if node.all(has_cost) {
            let costs = &self.costs;
            let cost_f = |id| costs[&eg.find(id)].0.clone();
            Some(self.cost_function.cost(node, cost_f))
        } else {
            None
        }
    }

    fn find_costs(&mut self) {
        let mut did_something = true;
        while did_something {
            did_something = false;

            for class in self.egraph.classes() {
                let pass = self.make_pass(class);
                match (self.costs.get(&class.id), pass) {
                    (None, Some(new)) => {
                        self.costs.insert(class.id, new);
                        did_something = true;
                    }
                    (Some(old), Some(new)) if new.0 < old.0 => {
                        self.costs.insert(class.id, new);
                        did_something = true;
                    }
                    _ => (),
                }
            }
        }

        for class in self.egraph.classes() {
            if !self.costs.contains_key(&class.id) {
                log::warn!(
                    "Failed to compute cost for eclass {}: {:?}",
                    class.id,
                    class.nodes
                )
            }
        }
    }

    fn make_pass(&mut self, eclass: &EClass<L, N::Data>) -> Option<(CF::Cost, L)> {
        let (cost, node) = eclass
            .iter()
            .map(|n| (self.node_total_cost(n), n))
            .min_by(|a, b| cmp(&a.0, &b.0))
            .unwrap_or_else(|| panic!("Can't extract, eclass is empty: {:#?}", eclass));
        cost.map(|c| (c, node.clone()))
    }
}

#[cfg(test)]
mod tests {
    use crate::*;

    #[test]
    fn ast_size_overflow() {
        let rules: &[Rewrite<SymbolLang, ()>] =
            &[rewrite!("explode"; "(meow ?a)" => "(meow (meow ?a ?a))")];

        let start = "(meow 42)".parse().unwrap();
        let runner = Runner::default()
            .with_iter_limit(100)
            .with_expr(&start)
            .run(rules);

        let extractor = Extractor::new(&runner.egraph, AstSize);
        let (_, best_expr) = extractor.find_best(runner.roots[0]);
        assert_eq!(best_expr, start);
    }
}