1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
use std::ops::{BitOr, Index, IndexMut};
use std::{cmp::Ordering, convert::TryFrom};
use std::{
    convert::Infallible,
    fmt::{self, Debug, Display},
};
use std::{hash::Hash, str::FromStr};

use crate::*;

use fmt::Formatter;
use symbolic_expressions::{Sexp, SexpError};
use thiserror::Error;

/// Trait that defines a Language whose terms will be in the [`EGraph`].
///
/// Check out the [`define_language!`] macro for an easy way to create
/// a [`Language`].
///
/// If you want to pretty-print expressions, you should implement [`Display`] to
/// display the language node's operator. For example, a language node
/// `Add([Id; 2])` might be displayed as "+".
///
/// To parse expressions from strings you should also implement [`FromOp`].
///
/// The [`define_language!`] macro automatically implements both [`Display`] and
/// [`FromOp`].
///
/// See [`SymbolLang`] for quick-and-dirty use cases.
#[allow(clippy::len_without_is_empty)]
pub trait Language: Debug + Clone + Eq + Ord + Hash {
    /// Type representing the cases of this language.
    ///
    /// Used for short-circuiting the search for equivalent nodes.
    type Discriminant: Debug + Clone + Eq + Hash;

    /// Return the `Discriminant` of this node.
    #[allow(enum_intrinsics_non_enums)]
    fn discriminant(&self) -> Self::Discriminant;

    /// Returns true if this enode matches another enode.
    /// This should only consider the operator, not the children `Id`s.
    fn matches(&self, other: &Self) -> bool;

    /// Returns the children of this e-node.
    fn children(&self) -> &[Id];

    /// Returns a mutable slice of the children of this e-node.
    fn children_mut(&mut self) -> &mut [Id];

    /// Runs a given function on each child `Id`.
    fn for_each<F: FnMut(Id)>(&self, f: F) {
        self.children().iter().copied().for_each(f)
    }

    /// Runs a given function on each child `Id`, allowing mutation of that `Id`.
    fn for_each_mut<F: FnMut(&mut Id)>(&mut self, f: F) {
        self.children_mut().iter_mut().for_each(f)
    }

    /// Runs a falliable function on each child, stopping if the function returns
    /// an error.
    fn try_for_each<E, F>(&self, mut f: F) -> Result<(), E>
    where
        F: FnMut(Id) -> Result<(), E>,
        E: Clone,
    {
        self.fold(Ok(()), |res, id| res.and_then(|_| f(id)))
    }

    /// Returns the number of the children this enode has.
    ///
    /// The default implementation uses `fold` to accumulate the number of
    /// children.
    fn len(&self) -> usize {
        self.fold(0, |len, _| len + 1)
    }

    /// Returns true if this enode has no children.
    fn is_leaf(&self) -> bool {
        self.all(|_| false)
    }

    /// Runs a given function to replace the children.
    fn update_children<F: FnMut(Id) -> Id>(&mut self, mut f: F) {
        self.for_each_mut(|id| *id = f(*id))
    }

    /// Creates a new enode with children determined by the given function.
    fn map_children<F: FnMut(Id) -> Id>(mut self, f: F) -> Self {
        self.update_children(f);
        self
    }

    /// Folds over the children, given an initial accumulator.
    fn fold<F, T>(&self, init: T, mut f: F) -> T
    where
        F: FnMut(T, Id) -> T,
        T: Clone,
    {
        let mut acc = init;
        self.for_each(|id| acc = f(acc.clone(), id));
        acc
    }

    /// Returns true if the predicate is true on all children.
    /// Does not short circuit.
    fn all<F: FnMut(Id) -> bool>(&self, mut f: F) -> bool {
        self.fold(true, |acc, id| acc && f(id))
    }

    /// Returns true if the predicate is true on any children.
    /// Does not short circuit.
    fn any<F: FnMut(Id) -> bool>(&self, mut f: F) -> bool {
        self.fold(false, |acc, id| acc || f(id))
    }

    /// Make a [`RecExpr`] by mapping this enodes children to other [`RecExpr`]s.
    ///
    /// This can be used to join together different expression with a new node.
    ///
    /// # Example
    /// ```
    /// # use egg::*;
    /// let a_plus_2: RecExpr<SymbolLang> = "(+ a 2)".parse().unwrap();
    /// // here's an enode with some meaningless child ids
    /// let enode = SymbolLang::new("*", vec![Id::from(0), Id::from(0)]);
    /// // make a new recexpr, replacing enode's children with a_plus_2
    /// let recexpr = enode.join_recexprs(|_id| &a_plus_2);
    /// assert_eq!(recexpr, "(* (+ a 2) (+ a 2))".parse().unwrap())
    /// ```
    fn join_recexprs<F, Expr>(&self, mut child_recexpr: F) -> RecExpr<Self>
    where
        F: FnMut(Id) -> Expr,
        Expr: AsRef<[Self]>,
    {
        fn build<L: Language>(to: &mut RecExpr<L>, from: &[L]) -> Id {
            let last = from.last().unwrap().clone();
            let new_node = last.map_children(|id| {
                let i = usize::from(id) + 1;
                build(to, &from[0..i])
            });
            to.add(new_node)
        }

        let mut expr = RecExpr::default();
        let node = self
            .clone()
            .map_children(|id| build(&mut expr, child_recexpr(id).as_ref()));
        expr.add(node);
        expr
    }

    /// Build a [`RecExpr`] from an e-node.
    ///
    /// The provided `get_node` function must return the same node for a given
    /// [`Id`] on multiple invocations.
    ///
    /// # Example
    ///
    /// You could use this method to perform an "ad-hoc" extraction from the e-graph,
    /// where you already know which node you want pick for each class:
    /// ```
    /// # use egg::*;
    /// let mut egraph = EGraph::<SymbolLang, ()>::default();
    /// let expr = "(foo (bar1 (bar2 (bar3 baz))))".parse().unwrap();
    /// let root = egraph.add_expr(&expr);
    /// let get_first_enode = |id| egraph[id].nodes[0].clone();
    /// let expr2 = get_first_enode(root).build_recexpr(get_first_enode);
    /// assert_eq!(expr, expr2)
    /// ```
    fn build_recexpr<F>(&self, mut get_node: F) -> RecExpr<Self>
    where
        F: FnMut(Id) -> Self,
    {
        self.try_build_recexpr::<_, std::convert::Infallible>(|id| Ok(get_node(id)))
            .unwrap()
    }

    /// Same as [`Language::build_recexpr`], but fallible.
    fn try_build_recexpr<F, Err>(&self, mut get_node: F) -> Result<RecExpr<Self>, Err>
    where
        F: FnMut(Id) -> Result<Self, Err>,
    {
        let mut set = IndexSet::<Self>::default();
        let mut ids = HashMap::<Id, Id>::default();
        let mut todo = self.children().to_vec();

        while let Some(id) = todo.last().copied() {
            if ids.contains_key(&id) {
                todo.pop();
                continue;
            }

            let node = get_node(id)?;

            // check to see if we can do this node yet
            let mut ids_has_all_children = true;
            for child in node.children() {
                if !ids.contains_key(child) {
                    ids_has_all_children = false;
                    todo.push(*child)
                }
            }

            // all children are processed, so we can lookup this node safely
            if ids_has_all_children {
                let node = node.map_children(|id| ids[&id]);
                let new_id = set.insert_full(node).0;
                ids.insert(id, Id::from(new_id));
                todo.pop();
            }
        }

        // finally, add the root node and create the expression
        let mut nodes: Vec<Self> = set.into_iter().collect();
        nodes.push(self.clone().map_children(|id| ids[&id]));
        Ok(RecExpr::from(nodes))
    }
}

/// A trait for parsing e-nodes. This is implemented automatically by
/// [`define_language!`].
///
/// If a [`Language`] implements both [`Display`] and [`FromOp`], the
/// [`Display`] implementation should produce a string suitable for parsing by
/// [`from_op`]:
///
/// ```
/// # use egg::*;
/// # use std::fmt::Display;
/// fn from_op_display_compatible<T: FromOp + Display>(node: T) {
///     let op = node.to_string();
///     let mut children = Vec::new();
///     node.for_each(|id| children.push(id));
///     let parsed = T::from_op(&op, children).unwrap();
///
///     assert_eq!(node, parsed);
/// }
/// ```
///
/// # Examples
/// `define_language!` implements [`FromOp`] and [`Display`] automatically:
/// ```
/// # use egg::*;
///
/// define_language! {
///     enum Calc {
///        "+" = Add([Id; 2]),
///        Num(i32),
///     }
/// }
///
/// let add = Calc::Add([Id::from(0), Id::from(1)]);
/// let parsed = Calc::from_op("+", vec![Id::from(0), Id::from(1)]).unwrap();
///
/// assert_eq!(add.to_string(), "+");
/// assert_eq!(parsed, add);
/// ```
///
/// [`from_op`]: FromOp::from_op
pub trait FromOp: Language + Sized {
    /// The error type returned by [`from_op`] if its arguments do not
    /// represent a valid e-node.
    ///
    /// [`from_op`]: FromOp::from_op
    type Error: Debug;

    /// Parse an e-node with operator `op` and children `children`.
    fn from_op(op: &str, children: Vec<Id>) -> Result<Self, Self::Error>;
}

/// A generic error for failing to parse an operator. This is the error type
/// used by [`define_language!`] for [`FromOp::Error`], and is a sensible choice
/// when implementing [`FromOp`] manually.
#[derive(Debug, Error)]
#[error("could not parse an e-node with operator {op:?} and children {children:?}")]
pub struct FromOpError {
    op: String,
    children: Vec<Id>,
}

impl FromOpError {
    /// Create a new `FromOpError` representing a failed call
    /// `FromOp::from_op(op, children)`.
    pub fn new(op: &str, children: Vec<Id>) -> Self {
        Self {
            op: op.to_owned(),
            children,
        }
    }
}

/// A marker that defines acceptable children types for [`define_language!`].
///
/// See [`define_language!`] for more details.
/// You should not have to implement this trait.
///
pub trait LanguageChildren {
    /// Checks if there are no children.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
    /// Returns the number of children.
    fn len(&self) -> usize;
    /// Checks if n is an acceptable number of children for this type.
    fn can_be_length(n: usize) -> bool;
    /// Create an instance of this type from a `Vec<Id>`,
    /// with the guarantee that can_be_length is already true on the `Vec`.
    fn from_vec(v: Vec<Id>) -> Self;
    /// Returns a slice of the children `Id`s.
    fn as_slice(&self) -> &[Id];
    /// Returns a mutable slice of the children `Id`s.
    fn as_mut_slice(&mut self) -> &mut [Id];
}

impl<const N: usize> LanguageChildren for [Id; N] {
    fn len(&self) -> usize {
        N
    }

    fn can_be_length(n: usize) -> bool {
        n == N
    }

    fn from_vec(v: Vec<Id>) -> Self {
        Self::try_from(v.as_slice()).unwrap()
    }

    fn as_slice(&self) -> &[Id] {
        self
    }

    fn as_mut_slice(&mut self) -> &mut [Id] {
        self
    }
}

#[rustfmt::skip]
impl LanguageChildren for Box<[Id]> {
    fn len(&self) -> usize                   { <[Id]>::len(self) }
    fn can_be_length(_: usize) -> bool       { true }
    fn from_vec(v: Vec<Id>) -> Self          { v.into() }
    fn as_slice(&self) -> &[Id]              { self }
    fn as_mut_slice(&mut self) -> &mut [Id]  { self }
}

#[rustfmt::skip]
impl LanguageChildren for Vec<Id> {
    fn len(&self) -> usize                   { <[Id]>::len(self) }
    fn can_be_length(_: usize) -> bool       { true }
    fn from_vec(v: Vec<Id>) -> Self          { v }
    fn as_slice(&self) -> &[Id]              { self }
    fn as_mut_slice(&mut self) -> &mut [Id]  { self }
}

#[rustfmt::skip]
impl LanguageChildren for Id {
    fn len(&self) -> usize                   { 1 }
    fn can_be_length(n: usize) -> bool       { n == 1 }
    fn from_vec(v: Vec<Id>) -> Self          { v[0] }
    fn as_slice(&self) -> &[Id]              { std::slice::from_ref(self) }
    fn as_mut_slice(&mut self) -> &mut [Id]  { std::slice::from_mut(self) }
}

/// A recursive expression from a user-defined [`Language`].
///
/// This conceptually represents a recursive expression, but it's actually just
/// a list of enodes.
///
/// [`RecExpr`]s must satisfy the invariant that enodes' children must refer to
/// elements that come before it in the list. For example, the expression
/// `(+ (* x 5) x)` could be represented by a recursive expression of the form
/// `[Num(5), Var("x"), Mul(1, 0), Add(2, 1)]`.
///
/// If the `serde-1` feature is enabled, this implements
/// [`serde::Serialize`](https://docs.rs/serde/latest/serde/trait.Serialize.html).
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct RecExpr<L> {
    nodes: Vec<L>,
}

#[cfg(feature = "serde-1")]
impl<L: Language + Display> serde::Serialize for RecExpr<L> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        let s = self.to_sexp().to_string();
        serializer.serialize_str(&s)
    }
}

impl<L> Default for RecExpr<L> {
    fn default() -> Self {
        Self::from(vec![])
    }
}

impl<L> AsRef<[L]> for RecExpr<L> {
    fn as_ref(&self) -> &[L] {
        &self.nodes
    }
}

impl<L> From<Vec<L>> for RecExpr<L> {
    fn from(nodes: Vec<L>) -> Self {
        Self { nodes }
    }
}

impl<L> From<RecExpr<L>> for Vec<L> {
    fn from(val: RecExpr<L>) -> Self {
        val.nodes
    }
}

impl<L: Language> RecExpr<L> {
    /// Adds a given enode to this `RecExpr`.
    /// The enode's children `Id`s must refer to elements already in this list.
    pub fn add(&mut self, node: L) -> Id {
        debug_assert!(
            node.all(|id| usize::from(id) < self.nodes.len()),
            "node {:?} has children not in this expr: {:?}",
            node,
            self
        );
        self.nodes.push(node);
        Id::from(self.nodes.len() - 1)
    }

    pub(crate) fn compact(mut self) -> Self {
        let mut ids = hashmap_with_capacity::<Id, Id>(self.nodes.len());
        let mut set = IndexSet::default();
        for (i, node) in self.nodes.drain(..).enumerate() {
            let node = node.map_children(|id| ids[&id]);
            let new_id = set.insert_full(node).0;
            ids.insert(Id::from(i), Id::from(new_id));
        }
        self.nodes.extend(set);
        self
    }

    pub(crate) fn extract(&self, new_root: Id) -> Self {
        self[new_root].build_recexpr(|id| self[id].clone())
    }

    /// Checks if this expr is a DAG, i.e. doesn't have any back edges
    pub fn is_dag(&self) -> bool {
        for (i, n) in self.nodes.iter().enumerate() {
            for &child in n.children() {
                if usize::from(child) >= i {
                    return false;
                }
            }
        }
        true
    }
}

impl<L: Language> Index<Id> for RecExpr<L> {
    type Output = L;
    fn index(&self, id: Id) -> &L {
        &self.nodes[usize::from(id)]
    }
}

impl<L: Language> IndexMut<Id> for RecExpr<L> {
    fn index_mut(&mut self, id: Id) -> &mut L {
        &mut self.nodes[usize::from(id)]
    }
}

impl<L: Language + Display> Display for RecExpr<L> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.nodes.is_empty() {
            Display::fmt("()", f)
        } else {
            let s = self.to_sexp().to_string();
            Display::fmt(&s, f)
        }
    }
}

impl<L: Language + Display> RecExpr<L> {
    /// Convert this RecExpr into an Sexp
    pub(crate) fn to_sexp(&self) -> Sexp {
        let last = self.nodes.len() - 1;
        if !self.is_dag() {
            log::warn!("Tried to print a non-dag: {:?}", self.nodes);
        }
        self.to_sexp_rec(last, &mut |_| None)
    }

    fn to_sexp_rec(&self, i: usize, f: &mut impl FnMut(usize) -> Option<String>) -> Sexp {
        let node = &self.nodes[i];
        let op = Sexp::String(node.to_string());
        if node.is_leaf() {
            op
        } else {
            let mut vec = vec![op];
            for child in node.children().iter().map(|i| usize::from(*i)) {
                vec.push(if let Some(s) = f(child) {
                    return Sexp::String(s);
                } else if child < i {
                    self.to_sexp_rec(child, f)
                } else {
                    Sexp::String(format!("<<<< CYCLE to {} = {:?} >>>>", i, node))
                })
            }
            Sexp::List(vec)
        }
    }

    /// Pretty print with a maximum line length.
    ///
    /// This gives you a nice, indented, pretty-printed s-expression.
    ///
    /// # Example
    /// ```
    /// # use egg::*;
    /// let e: RecExpr<SymbolLang> = "(* (+ 2 2) (+ x y))".parse().unwrap();
    /// assert_eq!(e.pretty(10), "
    /// (*
    ///   (+ 2 2)
    ///   (+ x y))
    /// ".trim());
    /// ```
    pub fn pretty(&self, width: usize) -> String {
        let sexp = self.to_sexp();

        let mut buf = String::new();
        pretty_print(&mut buf, &sexp, width, 1).unwrap();
        buf
    }
}

/// An error type for failures when attempting to parse an s-expression as a
/// [`RecExpr<L>`].
#[derive(Debug, Error)]
pub enum RecExprParseError<E> {
    /// An empty s-expression was found. Usually this is caused by an
    /// empty list "()" somewhere in the input.
    #[error("found empty s-expression")]
    EmptySexp,

    /// A list was found where an operator was expected. This is caused by
    /// s-expressions of the form "((a b c) d e f)."
    #[error("found a list in the head position: {0}")]
    HeadList(Sexp),

    /// Attempting to parse an operator into a value of type `L` failed.
    #[error(transparent)]
    BadOp(E),

    /// An error occurred while parsing the s-expression itself, generally
    /// because the input had an invalid structure (e.g. unpaired parentheses).
    #[error(transparent)]
    BadSexp(SexpError),
}

impl<L: FromOp> FromStr for RecExpr<L> {
    type Err = RecExprParseError<L::Error>;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        use RecExprParseError::*;

        fn parse_sexp_into<L: FromOp>(
            sexp: &Sexp,
            expr: &mut RecExpr<L>,
        ) -> Result<Id, RecExprParseError<L::Error>> {
            match sexp {
                Sexp::Empty => Err(EmptySexp),
                Sexp::String(s) => {
                    let node = L::from_op(s, vec![]).map_err(BadOp)?;
                    Ok(expr.add(node))
                }
                Sexp::List(list) if list.is_empty() => Err(EmptySexp),
                Sexp::List(list) => match &list[0] {
                    Sexp::Empty => unreachable!("Cannot be in head position"),
                    list @ Sexp::List(..) => Err(HeadList(list.to_owned())),
                    Sexp::String(op) => {
                        let arg_ids: Vec<Id> = list[1..]
                            .iter()
                            .map(|s| parse_sexp_into(s, expr))
                            .collect::<Result<_, _>>()?;
                        let node = L::from_op(op, arg_ids).map_err(BadOp)?;
                        Ok(expr.add(node))
                    }
                },
            }
        }

        let mut expr = RecExpr::default();
        let sexp = symbolic_expressions::parser::parse_str(s.trim()).map_err(BadSexp)?;
        parse_sexp_into(&sexp, &mut expr)?;
        Ok(expr)
    }
}

/// Result of [`Analysis::merge`] indicating which of the inputs
/// are different from the merged result.
///
/// The fields correspond to whether the initial `a` and `b` inputs to [`Analysis::merge`]
/// were different from the final merged value.
///
/// In both cases the result may be conservative -- they may indicate `true` even
/// when there is no difference between the input and the result.
///
/// `DidMerge`s can be "or"ed together using the `|` operator.
/// This can be useful for composing analyses.
pub struct DidMerge(pub bool, pub bool);

impl BitOr for DidMerge {
    type Output = DidMerge;

    fn bitor(mut self, rhs: Self) -> Self::Output {
        self.0 |= rhs.0;
        self.1 |= rhs.1;
        self
    }
}

/** Arbitrary data associated with an [`EClass`].

`egg` allows you to associate arbitrary data with each eclass.
The [`Analysis`] allows that data to behave well even across eclasses merges.

[`Analysis`] can prove useful in many situtations.
One common one is constant folding, a kind of partial evaluation.
In that case, the metadata is basically `Option<L>`, storing
the cheapest constant expression (if any) that's equivalent to the
enodes in this eclass.
See the test files [`math.rs`] and [`prop.rs`] for more complex
examples on this usage of [`Analysis`].

If you don't care about [`Analysis`], `()` implements it trivally,
just use that.

# Example

```
use egg::{*, rewrite as rw};

define_language! {
    enum SimpleMath {
        "+" = Add([Id; 2]),
        "*" = Mul([Id; 2]),
        Num(i32),
        Symbol(Symbol),
    }
}

// in this case, our analysis itself doesn't require any data, so we can just
// use a unit struct and derive Default
#[derive(Default)]
struct ConstantFolding;
impl Analysis<SimpleMath> for ConstantFolding {
    type Data = Option<i32>;

    fn merge(&mut self, to: &mut Self::Data, from: Self::Data) -> DidMerge {
        egg::merge_max(to, from)
    }

    fn make(egraph: &mut EGraph<SimpleMath, Self>, enode: &SimpleMath) -> Self::Data {
        let x = |i: &Id| egraph[*i].data;
        match enode {
            SimpleMath::Num(n) => Some(*n),
            SimpleMath::Add([a, b]) => Some(x(a)? + x(b)?),
            SimpleMath::Mul([a, b]) => Some(x(a)? * x(b)?),
            _ => None,
        }
    }

    fn modify(egraph: &mut EGraph<SimpleMath, Self>, id: Id) {
        if let Some(i) = egraph[id].data {
            let added = egraph.add(SimpleMath::Num(i));
            egraph.union(id, added);
        }
    }
}

let rules = &[
    rw!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rw!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rw!("add-0"; "(+ ?a 0)" => "?a"),
    rw!("mul-0"; "(* ?a 0)" => "0"),
    rw!("mul-1"; "(* ?a 1)" => "?a"),
];

let expr = "(+ 0 (* (+ 4 -3) foo))".parse().unwrap();
let mut runner = Runner::<SimpleMath, ConstantFolding, ()>::default().with_expr(&expr).run(rules);
let just_foo = runner.egraph.add_expr(&"foo".parse().unwrap());
assert_eq!(runner.egraph.find(runner.roots[0]), runner.egraph.find(just_foo));
```

[`math.rs`]: https://github.com/egraphs-good/egg/blob/main/tests/math.rs
[`prop.rs`]: https://github.com/egraphs-good/egg/blob/main/tests/prop.rs
*/
pub trait Analysis<L: Language>: Sized {
    /// The per-[`EClass`] data for this analysis.
    type Data: Debug;

    /// Makes a new [`Analysis`] data for a given e-node.
    ///
    /// Note the mutable `egraph` parameter: this is needed for some
    /// advanced use cases, but most use cases will not need to mutate
    /// the e-graph in any way.
    /// It is **not** `make`'s responsiblity to insert the e-node;
    /// the e-node is "being inserted" when this function is called.
    /// Doing so will create an infinite loop.
    ///
    /// Note that `enode`'s children may not be canonical
    fn make(egraph: &mut EGraph<L, Self>, enode: &L) -> Self::Data;

    /// An optional hook that allows inspection before a [`union`] occurs.
    /// When explanations are enabled, it gives two ids that represent the two particular terms being unioned, not the canonical ids for the two eclasses.
    /// It also gives a justification for the union when explanations are enabled.
    ///
    /// By default it does nothing.
    ///
    /// `pre_union` is called _a lot_, so doing anything significant
    /// (like printing) will cause things to slow down.
    ///
    /// [`union`]: EGraph::union()
    #[allow(unused_variables)]
    fn pre_union(
        egraph: &EGraph<L, Self>,
        id1: Id,
        id2: Id,
        justification: &Option<Justification>,
    ) {
    }

    /// Defines how to merge two `Data`s when their containing
    /// [`EClass`]es merge.
    ///
    /// This should update `a` to correspond to the merged analysis
    /// data.
    ///
    /// The result is a `DidMerge(a_merged, b_merged)` indicating whether
    /// the merged result is different from `a` and `b` respectively.
    ///
    /// Since `merge` can modify `a`, let `a0`/`a1` be the value of `a`
    /// before/after the call to `merge`, respectively.
    ///
    /// If `a0 != a1` the result must have `a_merged == true`. This may be
    /// conservative -- it may be `true` even if even if `a0 == a1`.
    ///
    /// If `b != a1` the result must have `b_merged == true`. This may be
    /// conservative -- it may be `true` even if even if `b == a1`.
    ///
    /// This function may modify the [`Analysis`], which can be useful as a way
    /// to store information for the [`Analysis::modify`] hook to process, since
    /// `modify` has access to the e-graph.
    fn merge(&mut self, a: &mut Self::Data, b: Self::Data) -> DidMerge;

    /// A hook that allows the modification of the
    /// [`EGraph`].
    ///
    /// By default this does nothing.
    ///
    /// This function is called immediately following
    /// `Analysis::merge` when unions are performed.
    #[allow(unused_variables)]
    fn modify(egraph: &mut EGraph<L, Self>, id: Id) {}

    /// Whether or not e-matching should allow finding cycles.
    ///
    /// By default, this returns `true`.
    ///
    /// Setting this to `false` can improve performance in some cases, but risks
    /// missing some equalities depending on the use case.
    fn allow_ematching_cycles(&self) -> bool {
        true
    }
}

impl<L: Language> Analysis<L> for () {
    type Data = ();
    fn make(_egraph: &mut EGraph<L, Self>, _enode: &L) -> Self::Data {}
    fn merge(&mut self, _: &mut Self::Data, _: Self::Data) -> DidMerge {
        DidMerge(false, false)
    }
}

/// A utility for implementing [`Analysis::merge`]
/// when the `Data` type has a total ordering.
/// This will take the maximum of the two values.
pub fn merge_max<T: Ord>(to: &mut T, from: T) -> DidMerge {
    let cmp = (*to).cmp(&from);
    match cmp {
        Ordering::Less => {
            *to = from;
            DidMerge(true, false)
        }
        Ordering::Equal => DidMerge(false, false),
        Ordering::Greater => DidMerge(false, true),
    }
}

/// A utility for implementing [`Analysis::merge`]
/// when the `Data` type has a total ordering.
/// This will take the minimum of the two values.
pub fn merge_min<T: Ord>(to: &mut T, from: T) -> DidMerge {
    let cmp = (*to).cmp(&from);
    match cmp {
        Ordering::Less => DidMerge(false, true),
        Ordering::Equal => DidMerge(false, false),
        Ordering::Greater => {
            *to = from;
            DidMerge(true, false)
        }
    }
}

/// A utility for implementing [`Analysis::merge`]
/// when the `Data` type is an [`Option`].
///
/// Always take a `Some` over a `None`
/// and calls the given function to merge two `Some`s.
pub fn merge_option<T>(
    to: &mut Option<T>,
    from: Option<T>,
    merge_fn: impl FnOnce(&mut T, T) -> DidMerge,
) -> DidMerge {
    match (to.as_mut(), from) {
        (None, None) => DidMerge(false, false),
        (None, from @ Some(_)) => {
            *to = from;
            DidMerge(true, false)
        }
        (Some(_), None) => DidMerge(false, true),
        (Some(a), Some(b)) => merge_fn(a, b),
    }
}

/// A simple language used for testing.
#[derive(Debug, Hash, PartialEq, Eq, Clone, PartialOrd, Ord)]
#[cfg_attr(feature = "serde-1", derive(serde::Serialize, serde::Deserialize))]
pub struct SymbolLang {
    /// The operator for an enode
    pub op: Symbol,
    /// The enode's children `Id`s
    pub children: Vec<Id>,
}

impl SymbolLang {
    /// Create an enode with the given string and children
    pub fn new(op: impl Into<Symbol>, children: Vec<Id>) -> Self {
        let op = op.into();
        Self { op, children }
    }

    /// Create childless enode with the given string
    pub fn leaf(op: impl Into<Symbol>) -> Self {
        Self::new(op, vec![])
    }
}

impl Language for SymbolLang {
    type Discriminant = Symbol;

    fn discriminant(&self) -> Self::Discriminant {
        self.op
    }

    fn matches(&self, other: &Self) -> bool {
        self.op == other.op && self.len() == other.len()
    }

    fn children(&self) -> &[Id] {
        &self.children
    }

    fn children_mut(&mut self) -> &mut [Id] {
        &mut self.children
    }
}

impl Display for SymbolLang {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Display::fmt(&self.op, f)
    }
}

impl FromOp for SymbolLang {
    type Error = Infallible;

    fn from_op(op: &str, children: Vec<Id>) -> Result<Self, Self::Error> {
        Ok(Self {
            op: op.into(),
            children,
        })
    }
}