1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#[allow(unused_imports)]
use crate::*;

/** A macro to easily create a [`Language`].

`define_language` derives `Debug`, `PartialEq`, `Eq`, `PartialOrd`, `Ord`,
`Hash`, and `Clone` on the given `enum` so it can implement [`Language`].
The macro also implements [`Display`] and [`FromOp`] for the `enum`
based on either the data of variants or the provided strings.

The final variant **must have a trailing comma**; this is due to limitations in
macro parsing.

The language discriminant will use the cases of the enum (the enum discriminant).

See [`LanguageChildren`] for acceptable types of children `Id`s.

Note that you can always implement [`Language`] yourself by just not using this
macro.

Presently, the macro does not support data variant with children, but that may
be added later.

# Example

The following macro invocation shows the the accepted forms of variants:
```
# use egg::*;
define_language! {
    enum SimpleLanguage {
        // string variant with no children
        "pi" = Pi,

        // string variants with an array of child `Id`s (any static size)
        // any type that implements LanguageChildren may be used here
        "+" = Add([Id; 2]),
        "-" = Sub([Id; 2]),
        "*" = Mul([Id; 2]),

        // can also do a variable number of children in a boxed slice
        // this will only match if the lengths are the same
        "list" = List(Box<[Id]>),

        // string variants with a single child `Id`
        // note that this is distinct from `Sub`, even though it has the same
        // string, because it has a different number of children
        "-"  = Neg(Id),

        // data variants with a single field
        // this field must implement `FromStr` and `Display`
        Num(i32),
        // language items are parsed in order, and we want symbol to
        // be a fallback, so we put it last
        Symbol(Symbol),
        // This is the ultimate fallback, it will parse any operator (as a string)
        // and any number of children.
        // Note that if there were 0 children, the previous branch would have succeeded
        Other(Symbol, Vec<Id>),
    }
}
```

[`Display`]: std::fmt::Display
**/
#[macro_export]
macro_rules! define_language {
    ($(#[$meta:meta])* $vis:vis enum $name:ident $variants:tt) => {
        $crate::__define_language!($(#[$meta])* $vis enum $name $variants -> {} {} {} {} {} {});
    };
}

#[doc(hidden)]
#[macro_export]
macro_rules! __define_language {
    ($(#[$meta:meta])* $vis:vis enum $name:ident {} ->
     $decl:tt {$($matches:tt)*} $children:tt $children_mut:tt
     $display:tt {$($from_op:tt)*}
    ) => {
        $(#[$meta])*
        #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Clone)]
        $vis enum $name $decl

        impl $crate::Language for $name {
            type Discriminant = std::mem::Discriminant<Self>;

            #[inline(always)]
            fn discriminant(&self) -> Self::Discriminant {
                std::mem::discriminant(self)
            }

            #[inline(always)]
            fn matches(&self, other: &Self) -> bool {
                ::std::mem::discriminant(self) == ::std::mem::discriminant(other) &&
                match (self, other) { $($matches)* _ => false }
            }

            fn children(&self) -> &[Id] { match self $children }
            fn children_mut(&mut self) -> &mut [Id] { match self $children_mut }
        }

        impl ::std::fmt::Display for $name {
            fn fmt(&self, f: &mut ::std::fmt::Formatter<'_>) -> ::std::fmt::Result {
                // We need to pass `f` to the match expression for hygiene
                // reasons.
                match (self, f) $display
            }
        }

        impl $crate::FromOp for $name {
            type Error = $crate::FromOpError;

            fn from_op(op: &str, children: ::std::vec::Vec<$crate::Id>) -> ::std::result::Result<Self, Self::Error> {
                match (op, children) {
                    $($from_op)*
                    (op, children) => Err($crate::FromOpError::new(op, children)),
                }
            }
        }
    };

    ($(#[$meta:meta])* $vis:vis enum $name:ident
     {
         $string:literal = $variant:ident,
         $($variants:tt)*
     } ->
     { $($decl:tt)* } { $($matches:tt)* } { $($children:tt)* } { $($children_mut:tt)* }
     { $($display:tt)* } { $($from_op:tt)* }
    ) => {
        $crate::__define_language!(
            $(#[$meta])* $vis enum $name
            { $($variants)* } ->
            { $($decl)*          $variant, }
            { $($matches)*       ($name::$variant, $name::$variant) => true, }
            { $($children)*      $name::$variant => &[], }
            { $($children_mut)*  $name::$variant => &mut [], }
            { $($display)*       ($name::$variant, f) => f.write_str($string), }
            { $($from_op)*       ($string, children) if children.is_empty() => Ok($name::$variant), }
        );
    };

    ($(#[$meta:meta])* $vis:vis enum $name:ident
     {
         $string:literal = $variant:ident ($ids:ty),
         $($variants:tt)*
     } ->
     { $($decl:tt)* } { $($matches:tt)* } { $($children:tt)* } { $($children_mut:tt)* }
     { $($display:tt)* } { $($from_op:tt)* }
    ) => {
        $crate::__define_language!(
            $(#[$meta])* $vis enum $name
            { $($variants)* } ->
            { $($decl)*          $variant($ids), }
            { $($matches)*       ($name::$variant(l), $name::$variant(r)) => $crate::LanguageChildren::len(l) == $crate::LanguageChildren::len(r), }
            { $($children)*      $name::$variant(ids) => $crate::LanguageChildren::as_slice(ids), }
            { $($children_mut)*  $name::$variant(ids) => $crate::LanguageChildren::as_mut_slice(ids), }
            { $($display)*       ($name::$variant(..), f) => f.write_str($string), }
            { $($from_op)*       (op, children) if op == $string && <$ids as $crate::LanguageChildren>::can_be_length(children.len()) => {
                  let children = <$ids as $crate::LanguageChildren>::from_vec(children);
                  Ok($name::$variant(children))
              },
            }
        );
    };

    ($(#[$meta:meta])* $vis:vis enum $name:ident
     {
         $variant:ident ($data:ty),
         $($variants:tt)*
     } ->
     { $($decl:tt)* } { $($matches:tt)* } { $($children:tt)* } { $($children_mut:tt)* }
     { $($display:tt)* } { $($from_op:tt)* }
    ) => {
        $crate::__define_language!(
            $(#[$meta])* $vis enum $name
            { $($variants)* } ->
            { $($decl)*          $variant($data), }
            { $($matches)*       ($name::$variant(data1), $name::$variant(data2)) => data1 == data2, }
            { $($children)*      $name::$variant(_data) => &[], }
            { $($children_mut)*  $name::$variant(_data) => &mut [], }
            { $($display)*       ($name::$variant(data), f) => ::std::fmt::Display::fmt(data, f), }
            { $($from_op)*       (op, children) if op.parse::<$data>().is_ok() && children.is_empty() => Ok($name::$variant(op.parse().unwrap())), }
        );
    };

    ($(#[$meta:meta])* $vis:vis enum $name:ident
     {
         $variant:ident ($data:ty, $ids:ty),
         $($variants:tt)*
     } ->
     { $($decl:tt)* } { $($matches:tt)* } { $($children:tt)* } { $($children_mut:tt)* }
     { $($display:tt)* } { $($from_op:tt)* }
    ) => {
        $crate::__define_language!(
            $(#[$meta])* $vis enum $name
            { $($variants)* } ->
            { $($decl)*          $variant($data, $ids), }
            { $($matches)*       ($name::$variant(d1, l), $name::$variant(d2, r)) => d1 == d2 && $crate::LanguageChildren::len(l) == $crate::LanguageChildren::len(r), }
            { $($children)*      $name::$variant(_, ids) => $crate::LanguageChildren::as_slice(ids), }
            { $($children_mut)*  $name::$variant(_, ids) => $crate::LanguageChildren::as_mut_slice(ids), }
            { $($display)*       ($name::$variant(data, _), f) => ::std::fmt::Display::fmt(data, f), }
            { $($from_op)*       (op, children) if op.parse::<$data>().is_ok() && <$ids as $crate::LanguageChildren>::can_be_length(children.len()) => {
                  let data = op.parse::<$data>().unwrap();
                  let children = <$ids as $crate::LanguageChildren>::from_vec(children);
                  Ok($name::$variant(data, children))
              },
            }
        );
    };
}

/** A macro to easily make [`Rewrite`]s.

The `rewrite!` macro greatly simplifies creating simple, purely
syntactic rewrites while also allowing more complex ones.

This panics if [`Rewrite::new`](Rewrite::new()) fails.

The simplest form `rewrite!(a; b => c)` creates a [`Rewrite`]
with name `a`, [`Searcher`] `b`, and [`Applier`] `c`.
Note that in the `b` and `c` position, the macro only accepts a single
token tree (see the [macros reference][macro] for more info).
In short, that means you should pass in an identifier, literal, or
something surrounded by parentheses or braces.

If you pass in a literal to the `b` or `c` position, the macro will
try to parse it as a [`Pattern`] which implements both [`Searcher`]
and [`Applier`].

The macro also accepts any number of `if <expr>` forms at the end,
where the given expression should implement [`Condition`].
For each of these, the macro will wrap the given applier in a
[`ConditionalApplier`] with the given condition, with the first condition being
the outermost, and the last condition being the innermost.

# Example
```
# use egg::*;
use std::borrow::Cow;
use std::sync::Arc;
define_language! {
    enum SimpleLanguage {
        Num(i32),
        "+" = Add([Id; 2]),
        "-" = Sub([Id; 2]),
        "*" = Mul([Id; 2]),
        "/" = Div([Id; 2]),
    }
}

type EGraph = egg::EGraph<SimpleLanguage, ()>;

let mut rules: Vec<Rewrite<SimpleLanguage, ()>> = vec![
    rewrite!("commute-add"; "(+ ?a ?b)" => "(+ ?b ?a)"),
    rewrite!("commute-mul"; "(* ?a ?b)" => "(* ?b ?a)"),

    rewrite!("mul-0"; "(* ?a 0)" => "0"),

    rewrite!("silly"; "(* ?a 1)" => { MySillyApplier("foo") }),

    rewrite!("something_conditional";
             "(/ ?a ?b)" => "(* ?a (/ 1 ?b))"
             if is_not_zero("?b")),
];

// rewrite! supports bidirectional rules too
// it returns a Vec of length 2, so you need to concat
rules.extend(vec![
    rewrite!("add-0"; "(+ ?a 0)" <=> "?a"),
    rewrite!("mul-1"; "(* ?a 1)" <=> "?a"),
].concat());

#[derive(Debug)]
struct MySillyApplier(&'static str);
impl Applier<SimpleLanguage, ()> for MySillyApplier {
    fn apply_one(&self, _: &mut EGraph, _: Id, _: &Subst, _: Option<&PatternAst<SimpleLanguage>>, _: Symbol) -> Vec<Id> {
        panic!()
    }
}

// This returns a function that implements Condition
fn is_not_zero(var: &'static str) -> impl Fn(&mut EGraph, Id, &Subst) -> bool {
    let var = var.parse().unwrap();
    let zero = SimpleLanguage::Num(0);
    // note this check is just an example,
    // checking for the absence of 0 is insufficient since 0 could be merged in later
    // see https://github.com/egraphs-good/egg/issues/297
    move |egraph, _, subst| !egraph[subst[var]].nodes.contains(&zero)
}
```

[macro]: https://doc.rust-lang.org/stable/reference/macros-by-example.html#metavariables
**/
#[macro_export]
macro_rules! rewrite {
    (
        $name:expr;
        $lhs:tt => $rhs:tt
        $(if $cond:expr)*
    )  => {{
        let searcher = $crate::__rewrite!(@parse Pattern $lhs);
        let core_applier = $crate::__rewrite!(@parse Pattern $rhs);
        let applier = $crate::__rewrite!(@applier core_applier; $($cond,)*);
        $crate::Rewrite::new($name.to_string(), searcher, applier).unwrap()
    }};
    (
        $name:expr;
        $lhs:tt <=> $rhs:tt
        $(if $cond:expr)*
    )  => {{
        let name = $name;
        let name2 = String::from(name.clone()) + "-rev";
        vec![
            $crate::rewrite!(name;  $lhs => $rhs $(if $cond)*),
            $crate::rewrite!(name2; $rhs => $lhs $(if $cond)*)
        ]
    }};
}

/** A macro to easily make [`Rewrite`]s using [`MultiPattern`]s.

Similar to the [`rewrite!`] macro,
this macro uses the form `multi_rewrite!(name; multipattern => multipattern)`.
String literals will be parsed a [`MultiPattern`]s.

**/
#[macro_export]
macro_rules! multi_rewrite {
    // limited multipattern support
    (
        $name:expr;
        $lhs:tt => $rhs:tt
    )  => {{
        let searcher = $crate::__rewrite!(@parse MultiPattern $lhs);
        let applier = $crate::__rewrite!(@parse MultiPattern $rhs);
        $crate::Rewrite::new($name.to_string(), searcher, applier).unwrap()
    }};
}

#[doc(hidden)]
#[macro_export]
macro_rules! __rewrite {
    (@parse $t:ident $rhs:literal) => {
        $rhs.parse::<$crate::$t<_>>().unwrap()
    };
    (@parse $t:ident $rhs:expr) => { $rhs };
    (@applier $applier:expr;) => { $applier };
    (@applier $applier:expr; $cond:expr, $($conds:expr,)*) => {
        $crate::ConditionalApplier {
            condition: $cond,
            applier: $crate::__rewrite!(@applier $applier; $($conds,)*)
        }
    };
}

#[cfg(test)]
mod tests {

    use crate::*;

    define_language! {
        enum Simple {
            "+" = Add([Id; 2]),
            "-" = Sub([Id; 2]),
            "*" = Mul([Id; 2]),
            "-" = Neg(Id),
            "list" = List(Box<[Id]>),
            "pi" = Pi,
            Int(i32),
            Var(Symbol),
        }
    }

    #[test]
    fn modify_children() {
        let mut add = Simple::Add([0.into(), 0.into()]);
        add.for_each_mut(|id| *id = 1.into());
        assert_eq!(add, Simple::Add([1.into(), 1.into()]));
    }

    #[test]
    fn some_rewrites() {
        let mut rws: Vec<Rewrite<Simple, ()>> = vec![
            // here it should parse the rhs
            rewrite!("rule"; "cons" => "f"),
            // here it should just accept the rhs without trying to parse
            rewrite!("rule"; "f" => { "pat".parse::<Pattern<_>>().unwrap() }),
        ];
        rws.extend(rewrite!("two-way"; "foo" <=> "bar"));
    }

    #[test]
    #[should_panic(expected = "refers to unbound var ?x")]
    fn rewrite_simple_panic() {
        let _: Rewrite<Simple, ()> = rewrite!("bad"; "?a" => "?x");
    }

    #[test]
    #[should_panic(expected = "refers to unbound var ?x")]
    fn rewrite_conditional_panic() {
        let x: Pattern<Simple> = "?x".parse().unwrap();
        let _: Rewrite<Simple, ()> = rewrite!(
            "bad"; "?a" => "?a" if ConditionEqual::new(x.clone(), x)
        );
    }
}